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1. Introduction

A few years ago we presented [1] a global analysis of deep inelastic scattering (DIS) and

Drell-Yan (DY) data which included all ν, ν̄ DIS cross sections available at that time.

Neutrino and anti-neutrino DIS plays an important rôle in the extraction of the parton

distribution functions (pdf’s), in particular of the strange-sea density. In fact, charged-

lepton DIS is insufficient to constrain all flavor distributions, being essentially limited to

one observable, F2. Charged-current DIS provides four more independent combinations of

parton densities: F ν
2 , F ν̄

2 , xF ν
3 and xF ν̄

3 . The abundance of ν, ν̄ data in the analysis of [1]

allowed the first unconstrained and fully consistent determination of s(x) and s̄(x) within

a global fit of parton densities, and the investigation of a hypothetical charge asymmetry

of the strange sea, s(x) 6= s̄(x). Our choice of fitting ν(ν̄) DIS differential cross sections

instead of ν(ν̄) DIS structure functions was motivated by the fact that F ν,ν̄
2 are extracted by

a preanalysis which is often based on theoretical assumptions conflicting with those of the

global fit that one is performing. For instance, the old CCFR structure functions [2] were

obtained by applying slow rescaling corrections and adopting an oversimplified leading-

order model for xF3, and that is why they were not included in the NLO fits of [1].

The CCFR-NuTeV Collaboration [3] has released new data on ν(ν̄) DIS cross sections

and structure functions, which are not affected by the theoretical biases occurring in the

analysis of [2]. The aim of the present paper is to use these data to update the fits

of [1].1 We will be especially interested in the strange sea distributions, and in particular

in the strange-antistrange asymmetry (section 2). This is not only interesting from a

theoretical point of view, but also relevant for the precise determination of one of the

fundamental parameters of the standard model (SM), the Weinberg angle θW . The NuTeV

extraction of sin2 θW from DIS data [5] gives a value which is 3σ above the standard model

prediction. A possible explanation of this discrepancy [6] is a non-zero second moment

1A preliminary account of this work was presented by one of us at the DIS03 Workshop [4].
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of s−(x) = s(x) − s̄(x), that is a strange-antistrange momentum asymmetry. A further

correction to the NuTeV evaluation comes from non-isoscalarity effects. In section 4 we

shall explore the implications of our results on the NuTeV sin2 θW puzzle.

2. Extracting the strange-sea distributions

The strange and antistrange densities are still the least known pdf’s. The reason for this

persistent lack of knowledge is that the determination of s(x) and s̄(x) relies on neutrino

and antineutrino DIS structure functions, which are usually affected by many systematic,

statistical and theoretical uncertainties. In [1] we started a program of full exploitation of

ν and ν̄ data with the aim of extracting s(x) and s̄(x) with no spurious constraints. One of

our findings was some evidence of a non zero, and positive, strange-antistrange momentum

asymmetry (for the definition of the errors, see section 3):

S− ≡
∫ 1

0
dxx s−(x) ≈ 0.0020 ± 0.0005 at Q2 = 20GeV2 . (2.1)

The charge symmetry of the strange sea is not dictated by any fundamental principle. Of

course, the proton has no net strangeness, but this only requires

∫ 1

0
dx s−(x) = 0 , (2.2)

that is a vanishing first moment of s−(x). As for s− itself and its higher moments, they are

not forced to be zero. Some non perturbative models [7] assume the existence, inside the

proton, of a sea of intrinsic qq̄ pairs, characterized by a relatively long timescale. Before

recombining, these pairs interact with other partons and manifest themselves in meson-

baryon fluctuations. For the strange sector, the relevant process is p → ΛK+, and since

pseudoscalar mesons have small masses, the average momentum fraction of the s̄ antiquark

in the K+ is expected to be smaller than the average momentum fraction of the s quark

coming from the Λ. The prediction of the intrinsic-sea models is therefore consistent in

sign (and in magnitude) with (2.1). Recently, Catani et al. [8] have pointed out that a

strange asymmetry can also be generated perturbatively by NNLO evolution of valence

distributions, due to the difference of flavor non diagonal splitting functions PND
qq − PND

qq̄ ,

which is non zero at order α2
s. With s − s̄ = 0 at the initial scale, one gets

S− ≡
∫ 1

0
dxx s−(x) ≈ −0.0005 at Q2 = 20GeV2 . (2.3)

which is a negative, but tiny, asymmetry. Therefore, a sizable and positive strange asym-

metry (which would help to reduce the discrepancy between the NuTeV result on sin2 θW

and the SM expectations, see below) can only have a non perturbative origin.

The s− distribution can be extracted from the difference of ν and ν̄ inclusive DIS cross

sections. Sticking for illustration to leading order, one has

d2σνN

dxdy
− d2σν̄N

dxdy
∝ xs− + [1 − (1 − y)2] (xuv + xdv) . (2.4)
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Since valence distributions are well constrained by other data, the quantity (2.4) is highly

sensitive to s−. What determines the strange asymmetry found in [1] is indeed the large-x

(and large-y) CDHSW data, which are quite precise. Admittedly, a cross section difference

is a delicate quantity to fit.

Another important source of information on strangeness is dimuon production in

charged current ν(ν̄) DIS. This process probes directly the strange sea, as it involves

transitions of the type W+s → c and W -gluon fusion processes W+g → s̄c. However, the

dimuon cross section dσ2µ is related to the charm production cross section dσcharm, which

contains the strange distributions, via some factor incorporating the details of fragmenta-

tion and acceptance corrections, which is experimentally computed by a Monte Carlo. The

NuTeV Collaboration has published rather precise data on dσ2µ [9], but the quantity which

is theoretically relevant, that is dσcharm, is not yet accessible. Moreover, the Monte Carlo

they use to relate dσ2µ to dσcharm, and to extract the strange sea distributions, is based on

a LO analysis.2 From past experience (compare the results in [9] and [11, 12], and see the

discussion in [13]) we know that the NLO correction to the strange distributions obtained

from dimuon data can be as large as 50 %. Therefore, including the NuTeV dimuon data

in a NLO fit raises serious consistency problems and may yield unreliable quantitative re-

sults. For this reason we do not use here the leading-order NuTeV dimuon data, but we

look forward to a more comprehensive fit as soon as NuTeV will release data on dσcharm

reconstructed by a NLO analysis.

3. The fit

The global fit reported in the present paper incorporates: structure functions from charged-

lepton DIS experiments: H1 [14], ZEUS [15], BCDMS [16] and NMC [17]; neutrino and anti-

neutrino DIS cross section data from BEBC [18], CDHS [19], CDHSW [20] and CCFR [3];

Drell-Yan measurements: E605 [21], E772 [22] and E866 [23]. In particular, our database

includes most of the available charged-current HERA data and the latest Drell-Yan results

from Fermilab.

In order to avoid higher-twist effects we applied the cuts Q2 ≥ 3.5GeV2 and W 2 ≥
10GeV2. In this region, target mass corrections are also very small (but they have been

taken into account). The strong coupling is set at the value αs(M
2
Z) = 0.117.

Imposing the isospin symmetry leads to the following relations among the pdf’s: up =

dn ≡ u, dp = un ≡ d, ūp = d̄n ≡ ū, d̄p = ūn ≡ ū, sp = sn ≡ s, s̄p = s̄n ≡ s̄. The pdf’s are

parametrized at Q2
0 = 4GeV2 as follows:

xuv(x,Q2
0) = Auv xBuv (1 − x)Cuv (1 + Duv xEuv ) , (3.1)

xdv(x,Q2
0) = Adv

xBdv (1 − x)Cdv (1 + Ddv
xEdv ) , (3.2)

x(ū + d̄)(x,Q2
0) = A+ xB+ (1 − x)C+ (1 + D+ xE+) , (3.3)

x(d̄ − ū)(x,Q2
0) = A− xB

− (1 − x)C− (1 + D− x) , (3.4)

xs(x,Q2
0) = As xBs (1 − x)Cs (1 + Ds xEs) , (3.5)

2A preliminary NLO analysis of dimuon data has been presented in [10].
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exp. # pts χ2

Charged–lepton DIS data

H1 (low Q2) 125 126.4

H1 (e+p, NC) 277 267.3

H1 (e+p, CC) 53 71.9

H1 (e−p, NC) 139 135.9

H1 (e−p, CC) 28 19.4

ZEUS (e+p, NC) 237 291.6

ZEUS (e+p, CC) 29 31.6

ZEUS (e−p, NC) 92 58.9

ZEUS (e−p, CC) 26 23.4

BCDMS (µd) 170 133.8

BCDMS (µp) 228 242.7

NMC (µd) 209 245.0

NMC (µp) 209 335.8

Neutrino DIS data

BEBC (νd) 70 74.4

BEBC (ν̄d) 49 50.8

BEBC (νp) 68 68.2

BEBC (ν̄p) 49 75.7

CDHSW (νFe) 494 382.5

CDHSW (ν̄Fe) 492 293.8

CDHS (νp) 45 58.2

CDHS (ν̄p) 42 54.7

CCFR (νFe) 1892 1840.8

CCFR (ν̄Fe) 775 719.1

Drell-Yan data

E605 (DY, pCu) 136 112.5

E772 (DY, pd) 212 223.9

E866 (DY, pp/pd) 15 13.55

Table 1: DIS and Drell-Yan data included in our fit, with the corresponding χ2 values.

xs̄(x,Q2
0) = As̄ xBs̄ (1 − x)Cs̄ (1 + Ds̄ xEs̄) , (3.6)

xg(x,Q2
0) = Ag xBg (1 − x)Cg (1 + Dg xEg) . (3.7)

Some of the parameters in eqs. (3.1)–(3.7) are determined by physical constraints: Ag

is fixed by the momentum sum rule,
∫ 1
0 [xg + x

∑

i(qi + q̄i)] dx = 1; Auv and Adv
are fixed

by the number sum rules
∫ 1
0 uv dx = 2 and

∫ 1
0 dv dx = 1. While the intermediate-x and

large-x shape of the strange distribution is well constrained by the data entering the fit,

the small-x behavior is not. Thus we set As = As̄ and Bs = Bs̄ = B+. We also set

Buv = Bdv
= B−, as suggested by Regge theory. One more parameter of s and s̄ is fixed

by imposing
∫ 1
0 (s − s̄) dx = 0 (no net strangeness).

The details of the fit are illustrated in [1]. Here we just recall that the correlations

between data points induced by systematic uncertainties for which information is available

are taken into account. All the neutrino and antineutrino DIS data with nuclear targets
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Figure 1: The parton distribution functions as obtained in our fit. The meaning of the error bands

is explained in the text.

(deuteron or heavy nuclei) have been corrected for nuclear effects as explained in [1]. The

χ2 values for each data set are collected in table 1. The total χ2 per degree of freedom is

χ2/dof = 5945.15/(6161 − 21).

The resulting pdf’s are shown in figure 1 (where they are compared to MRST2002 [24]

and CTEQ6M [25]); the parameters of eqs. (3.1)–(3.7) are listed in table 2. The curves

are accompanied by error bands obtained as follows. Calling p ≡ {p1, . . . , pn} the vector

of the free parameters of the fit, the width of the error band of some function f(x,Q2,p)

is given at each (x,Q2) point by [1, 26]:

∆f(x,Q2;p0) = |f(x,Q2;p0 + ∆p(x,Q2)) − f(x,Q2;p0 − ∆p(x,Q2))| , (3.8)

where p0 denotes the parameter set minimising the χ2 and the vector ∆p(x,Q2) ≡ {∆p1
×

(x,Q2), . . . ,∆pn(x,Q2)} is given by

∆p(x,Q2) =
M−1∂pf(x,Q2;p)

√

∂pf(x,Q2;p)M−1∂pf(x,Q2;p)
(3.9)
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A B C D E

uv 1.967 0.534 4.141 1.139497 5.841

dv 0.932 0.534 4.865 0.80158 5.109

ū + d̄ 0.102 -0.208 9.060 0.922 7.914

d̄ − ū 0.139 0.534 18.872 1.0 -46.594

s 0.052 -0.208 4.950 6.352 251.137

s̄ 0.052 -0.208 5.084 3.911 48.973

g 4.117 -0.030 17.739 3.136 1538.793

Table 2: Parameters of the pdf’s (see eqs. (3.1)–(3.7)).

fit result
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Figure 2: The reduced νDIS cross section.

with Mij = (1/2) ∂2χ2/∂pi∂pj and ∂p ≡ {∂/∂p1, . . . , ∂/∂pn}. Note that the errors do not

account for the uncertainties related to the functional form of the pdf’s, but are determined

by the abundance and the precision of the data, and by the constraints imposed on the

pdf’s. They represent an estimate of the goodness of the fit and correspond to an increase

of the χ2 by one unit (there other criteria for estimating the goodness of the fit, which give

larger uncertainties, see [27]).

We already recalled that the strange-sea distributions are essentially determined by

ν(ν̄) DIS data. In our fit we have two major series of neutrino and antineutrino mea-

surements, CDHSW [20] and CCFR [3]. Both experiments provide high-x data: while

they agree for antineutrino DIS, in the case of neutrino DIS the CDHSW cross sections

tend to be systematically higher, as one can see from figure 3, where the reduced cross

section
d2σred

dxdy
=

2π(M2
W + Q2)2

G2
F MNM4

W E

1

Y

d2σ

dxdy
, Y = 1 + (1 − y)2 − MNxy

E
(3.10)

is shown for x = 0.65 and Eν = 110GeV. Our curve lies between the two sets of data,

being closer to CCFR at low y (where CDHSW data are more uncertain), and to CDHSW

at high y (where there are no CCFR data).
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Figure 3: The distribution s−(x) = s(x) − s̄(x) at Q2 = 20 GeV2, as obtained in our fit.

The strange-antistrange asymmetry we obtained from our fit is plotted in figure 3. It

is much smaller than the asymmetry found in our previous fits [1] which contained only

the CDHSW cross section data. We find in fact

S− ≡
∫ 1

0
dxx s−(x) = (1.8 ± 3.8) × 10−4 at Q2 = 20GeV2 , (3.11)

to be compared with the old value (2.1).

As already said, opposite-sign dimuon production in ν(ν̄) DIS provides further infor-

mation on the strange sea. The NuTeV dimuon data are not statistically significant for

x > 0.5 but constrain the strange-sea densities at small x. Therefore, they affect the

large-x region in an indirect way, because of the sum rule (2.2). A recent study by Olness

et al. [27] shows that the NuTeV dimuon data drive a bump of s−(x) in the medium-

large x region, in qualitative agreement with the finding of [1] (except for the position

of the bump, which in our previous fit was driven to larger x by the CDHSW data).

These authors conclude that the dimuon data tend to favor a positive strange-antistrange

asymmetry, differently from the results of [9] (where, however, the sum rule (2.2) was

violated).

4. Implications on the Weinberg angle extraction

The NuTeV experiment [5] uses a fit to the measured ratios of neutral current to charged

current cross sections Rν(ν̄) = σ
ν(ν̄)
NC /σ

ν(ν̄)
CC to determine sin2 θW . They obtain the value

sin2 θW = 0.2277 ± 0.0013 (stat.) ± 0.0003 (syst.) ± 0.0006(theor.) (4.1)
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The theoretical error incorporates uncertainties on charm production, strange and charmed

sea, non-isoscalarity of the target, etc. Adding the errors in quadrature, one gets

sin2 θW = 0.2277 ± 0.0016 , (4.2)

which is about 3σ larger than the value obtained by a standard model fit to other elec-

troweak measurements, sin2 θW = 0.22272 ± 0.00036 [28].

The Weinberg angle is directly related to another quantity, the Paschos-Wolfenstein

ratio R, which is the combination

R =
σν

NC − σν̄
NC

σν
CC − σν̄

CC

. (4.3)

In the parton model, and for an isoscalar target, R is simply given by

R =
1

2
− sin2 θW . (4.4)

For a non isoscalar target like iron (the target used in the NuTeV experiment), including

QCD corrections at order O(αs) and making no symmetry assumptions about the pdf’s,

one finds three extra terms [6, 29]:

R =
1

2
− sin2 θW + δRs + δRN + δRiso , (4.5)

with (q− ≡ q − q̄ and Q ≡
∫

dxxq(x), δN ≡ (N − Z)/A, n ≡ N/A)

δRs = − S−

U− + D−
C(θW ) , (4.6)

δRN = −δN
U− − D−

U− + D−
C(θW ) , (4.7)

δRiso = n
δU− − δD−

U− + D−
C(θW ) , (4.8)

and

C(θW ) ≡ 1 − 7

3
sin2 θW +

8αs

9π

(

1

2
− sin2 θW

)

. (4.9)

In (4.6)–(4.8) we neglected terms of order (U− + D−)−2, and all distributions refer to

protons, except δU and δD which are isospin violating proton-neutron differences: δU =

Up − Dn, δD = Dp − Un. The three corrections (4.6)–(4.8) have the following meaning:

δRs is proportional to the strange asymmetry S− (with a minus sign in front); δRN is

the neutron excess correction (proportional to δN , which is 0.0574 for the NuTeV target);

δRiso is the isospin violation correction, arising from a possible non equality of up and dn,

and of dp and un (in our analysis we impose isospin invariance, hence δRiso is identically

zero3).

3Various studies [30 – 32] show that the isospin violation correction may be quantitatively relevant and

in the direction of reducing the NuTeV anomaly.
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NuTeV consider only the neutron excess correction and report [33, 5]

δRN = −0.0080 ± 0.00005 (NuTeV) (4.10)

(note the extremely small uncertainty). In our fit we find

δRN = −0.0107 ± 0.0005 (this analysis) (4.11)

Taking the difference between (4.11) and (4.10) one can roughly evaluate the corresponding

shift of sin2 θW : the result is sin2 θW = 0.2249 ± 0.0017, which is now only 1.4σ above

the standard model prediction. According to McFarland and Moch [34], the discrepancy

between (4.11) and (4.10) can be understood in terms of experimental cuts and of the

differences between the NuTeV fit to Rν,ν̄ and the Paschos-Wolfenstein ratio R that we

are considering here. Using the tools provided in [34], we checked that only half of the

difference between (4.11) and (4.10) is attributable to experimental cuts. The main point,

however, is that the uncertainty we find on δRN , due to the imperfect knowledge of the

parton distributions, is one order of magnitude larger than the corresponding uncertainty

evaluated by NuTeV (as first pointed out by Kulagin [29]).4 As for the strange asymmetry

contribution, due to the smallness of S−, it is a tiny correction to the Paschos-Wolfenstein

ratio, namely δRs = 2.5 × 10−5.

Concluding this section, we notice that there are two possible ways to solve the NuTeV

sin2 θW anomaly: (i) the first way consists in finding large negative corrections to R; (2)

the second, in discovering that the uncertainties of the experimental result are larger, so

that the discrepancy with the world average value becomes less significant. From various

studies [6, 29, 27], including the present one, it seems that a combination of the two

possibilities occurs: there are non negligible, and probably quite relevant, nuclear and

strangeness corrections with the right (negative) sign; on top of that, the error related to

the imperfect knowledge of the pdf’s is much larger than the one estimated by NuTeV.

Another relevant source of uncertainty concerns the electroweak radiative correction: also

in this case the NuTeV estimates seem to be too optimistic [35].

5. Final remarks

We presented a comprehensive and up-to-date NLO fit of DIS and Drell-Yan data, devoting

a particular attention to the strange sector and to the valence. Using both the CDHSW

and the CCFR measurements, we found that the strange sea asymmetry is very small. The

main limitation of our fit is the lack of data on dimuon production in ν(ν̄) DIS. Hence, a

natural development of the present work will be the inclusion of the dimuon cross sections,

as soon as the data on them will be suitable to a NLO analysis. This would lead to a more

precise determination of s−(x) and to a further check of the strange-antistrange asymmetry.

4We should mention that the authors of [34] state that the uncertainty on the neutron excess correction

estimated by NuTeV is 0.0003, in contrast with the much smaller value quoted in the original paper [5].
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